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ENERGY CASCADING IN THE BEAT-WAVE ACCELERATOR

C. J. McKinatrie(a) and S. H. 13atha(b)

(a) LM Alarnoa National Laboratory, Loa Almroa, New Mexico 87545

(h) Laboratory for Lam Energetic, 250 Emt River Road, Rochester, New York 14623

A review ia given of ●nergy c~=icading in the beat-wnve accelerator, The

propertim of the electromagnetic caacade and the corresponding plaam-

wave rvolution arc well understood within the framework of an approximate

analytic mmirl. Bruwd on this model, irbaliaed Iwwr-pl=ma coupling etTr-

ciencia of (he order

1. Plasma-Wave Generation

of 10% do not -m unreMonahle

In the plaama beat-wave accelerator [1], the plaama wave ie generated by the beating of two

r~>linear lMem [2], The higher-frequency Iaaer io denoted by the suhcript 1, the lower-frequency

Iwwr M Amotmi by the subscript O and the plnsma wave ia denoted by the mrbacript p. The radiation

pre.%surpof the l~rs Induccn longitudinal plaamaoecillations at the laser beat-frequency, If the i ‘ci(lent

frwluenci~a are rhosen w f$~t the plaama wav~ ia resonantly driven, the conmervntinn of energy nnd

Il]ll:lwntuln in mrmlfent.rd hy the frrquency and wnvevrctor matching condition

Al =~n+wP, kl=ko+kp.

IL fl~lluwnt hat tlr phmw ~pe~d of the plaama wave ran be expre~d in tcrma of the incidmt fwquenrirn

and w~vmwrtorn M (k -~o)/(kl -Lo), In an underderme plwma, in which the plarm,a frequency i~ much

ha than th~ lncnl~nt frequcncles, thlo ia ●qual to the group npeed C(1- w~/~~)’/2 of the light wnvm

rhe Lor~ntz factor mencirtt~d with ~he phaa~ ~pcwd of the plasma wmw io ther~fore ●ql’al to ~n/Ar

(“urr~rrt ●xpmirrwnta with (’02 l~ro have tiO/~p ~ 10, while a propcmd d~vic~ hM Qo/tiP a I(M)

I IICpl~m~wav? wnplltude ●vnlvPa arrmding to the •qu~tion

(++r’pj#)A, = -I, Jp,41A~ + ictl.4pla.4p , (1)



.

corresponding electrostatic field is

Ep = 0.97( n[rm-3])’’2.-lP

.41 and AO are the peak “quiver” velocities of~lectrona in the liner fields nnd are relattwi to the incident

la9er intensities by

,4, = 8.5 x 10-’”Al~m](f/[W.-2 ])”2”2

In the Iinem regime, the plaama waw grown indefinitely Ewntually, howewr, the quiver wlocity

of electrons in the plmmw wave field becomes w large that the Iowrat-orrier rdativist” corrections to

the ~lectron masa must be retained in the rquations of motion. Thin reaulto in a nonlinear rrductir)n

in th~ naturnl frequency of ~:w piaama WAWby nn nmount which k proportional tc, the square of the

wave amplitude [3], .4s a n=ault of this rel~tivlatic fr~quency shift, the plaama waw is driven nut of

IJhixw with the beating of the two light w~vm and the growth of the plaam~wave mturatce. If the

interaction is allowml to continue, the plwm-w~ve energy is fed hack into Ihe light wawe and the

plaam&wave amplitude decre-e accordingly

Consider the interaction of the light wavrw and the plaama wave ~t mme mrbitrary point <0 in

the plaama. Initially, the plaama wave haa only noise-level amplitude, At tmme time ro, th~ Iemling

r~(lgrs of the laser pulaea rmth the pcmition (., The plasma wave then darte to grow arccwdmg to

K(I, ( I), with laser ampiitudm which now drp~nt.i on time, This growth continu- untd the rtlativistir

fr~quenry shift delun~ the interaction, or the trniling edges of the her puh paau by, whirhw.r

ocrllrs first, For tlnlrs later than r. + q, t,h~ plmma wsve mcillat~ freely, with the amplitude it hnd

;\t t Ilne r,] + q. ‘ro maxilnize the •~rgy In the plums wave, the l-r puhmlength rl must he t.tilorml

to rollicl(lr ~ith thr Innximurn plaama-wmve ~mplitude, Th;~ Iimita the energy in the incident Iawr

\) IIlwn rend, tl~nr~, f hr •~rgy which can ultimately be delivered to the accelerawd pmrticles in orw

~tag~ Since the group speed O( a plmma wave in A typical beat-wave plaama in ewntinlly zmo (2),

th~ rnargy dPpnaItPd in the plasma WAVPis IFft hehlnd the l-r puht which rontinllnlly ,)rnpagmt,~

ll~trr frmh plMma mnd continue the proc~ anew,

“l”h,*saturation tlrm and saturated amplitude for a giwn pulme shape CM be entirn~ted lIy IISIIIE thP

IIIIP,U plaamkwava amplitude to detmrnine the rumulatlve phaar shift due to th~ plmama nonllnrnrlty

[Inpomng the condition that the cumulatiw phaae mhift equals m;2 rwiiana drt~rmlnm tiw naturntl[lr,

I IIIU nrtd mturat?d Amplltude M a function of the incdent lAWr lnl~nnitira md pulm ~hn~jm I’ll@

Inrdrnt pulM Irngths rnn th~n be rh~n to rmncld~ with the nmvimum plMmn-wnv~ ,UI:plIIIII!P, M

,llsrllwd mh~w~ 1“11*lLrn~nl>luth-l, iu snturntl~)n ~lm~ In giwn hy

[:1)



latter case, .41 and .40 (Ienote the peak laser amplitudes. The corresponding saturation length L, IS

equal to the accelt’ration time rnultlplicd hy the spt’e(i of IIght The saturated amplituclr IS givf~n hy

.4,qllr * (!8 – 1 7)1.4,.4(,1’/3, (1)

where t he coefficient of 1 8 applies t~> square pulses and t he coefficient of 1.7 applies to triangular

pulses In Eqs. (3) and (4), the weak dependence of T, and .4,md= ~>n~(l/dP has been suppressed.

This simple theory of plaama-wave generation is in good agreement with the results of compu?cr

simulations [4], [5]. Experimental verification was first ohtaind by J{xihi et al, [6], ‘rhe !).6 pm

(.41 s 0.030) and 10.6 pm (.4:, x O 015) Ilnm ~~fa (’02 laser were ild to resonantly drive a plasma

wave itl a plasma o~density 1 1 x 10IT crn ‘3. ‘rhe laser arnplitu(ies were modeled aY growing Iin(>arly in

I Irne for a duration of 1 ns, F(}r these parameters, Eq, (S) prmiirt,s a maximum pirr9m*wave amplitude

,lP of approximately O 08 at :he mld(ile of I ht’ laser pulse By rneaauring the time-integrated scattered

light, an average amplitude .4P of O 01 () ();1 was inferred, in good agreement with the theoreticrd

estimate, The corrwrpondlng elect ;ostatlr field wan 3 10 \levcm -’, which marked the first time a

longitudinal field in excess of 1 MeVcm- 1 had hem produced, m a controlled manner, by any means.

Ehrahim et a~. [7] have also confirmed the theory by measuring the acceleration of injected electrons In

thf.ir rxperlm~nt, the 96 ~m (..!l ~ 0,0S4) and 10,6 pm (,40 % 0,060) lines of a C’02 laser were also UW=(I

to rr.~orlant,ly tirlv~ n pl~ma wav~ In a p]Mma 0[ ~iensity 1 1 x 1017 cm-l For the~ parameters, t,hcwry

pretilrts a ma,~irnum pl,asma. wave amp]itu(ie ,4P ,)f approximately 0, 16 and a corresponding rr].~~imum

t,lectrr)stnt IC field of approximately .5(’( \fe Vcm-l ‘rhe ●lectrons w~re produced by irradiating an

:~lunllr]uln slab wit h an auxlllary high -]nterrslty ~’Oz laser The energy of the electrons obtalrwd in

Ihls rrlnnrr(’r WM () 5 1 () \lr V \frmrurem~lltrr indicated that electrons injected at (),6 \fe V wvre

arcr]erat(.d to z () Yfcv, Since the r{w{)nant plasma re~on wrM oniy 0.15 cm long, this implied tilat I he

avfr.4ge electrostatic field was 10 !kf?k’rrn”” 1, In good agreement with the theoretical estimate.

2. Long-Time Evolution



parameters, the acceleration tImc is of the order of 104 J; 1. There are several processes which can

occur on this longer timescak and have important consequences for the plasma-wave evolution.

13ehind the laser pukes, the wake of the plc~ma wave becomes turbulent. This can be due to the

parametric decay instability, in which the plasma wave decays into a secondary plasma wave and an ion-

acoustic wave [8] - [10], or the modulational Instability [1 1]. These instabilities both involve ion motion

and occur on a timescale longer than the electron timescale ~P- 1 by a factor of (mt/Zmc)112, where Z

is the ionic charge. The modulational inst. ahllity can also occur doe to the relativistic nonlinearity in

Eq. (1), The turbulent wake cannot be used for particle acceleraticm, and so plasma-wave generation

and beam loading must be accomplished before either of these instahilltiea occur. Since the incident

l~ser pulses continually propagate into fresh plasma, the deleterious effects of the ion instabilities can,

In i~rinciple, be avoided. For a detailed discussion of these competing procesaea and the corresponding

Ii:tlitations on the plasma-wave growth time, the r~ader IS referred to the papers of !tlora [12] and

Pesme et d, [13],

In the preceding analysis, the self-consistent evolution of the light-wave amplitudes was not taken

into account, Just as the beating of the incident iight waves produces a rmorant plasma wave at

the tilfference frequency, the beating of the transverse electron qt~iver-velocities with the plasma-wave

~lrI}sIty fluctuation producm Oaclllating currents at the sum and dlflerence frequencies, In this way, a

sptv’r, rum ofc~lirrear light waves IS generated, with frequencies and wavevectors which differ from tliow

{If the inc]dent wavwr by integral multiples of + and kP respectively. In contrast to the wmn~iary

waves described above, these side bandrr propagate with the incident waves and modify the process

,,f I,l;wrI)a-wave generation, ‘rhis nonlinear interaction cs,n also be viewed M n w=rlea of thrw-wavf*

procrs~ In which a ph,)ton elthc~ decays into ~ lower-frequency photon and a plssmun, or recornbiritw

with A plasmon to produce a higher-frequency photon. Notice that the total number of photmls rs

cf~userveti, and so the total elect,romagnetlc energy is proportional to the av~rage ~~’tlon-werglltrtl)

r lectrorn.agn~tic frequ~ncy. Not Ice ako that the number of pi~mons is ●qua] tc\ the difl~. rence het ween

t }Ie Ilumber of decay Interaction and the number of recombination interactions. It follows I hat fJIIly

a fraction Wp/Q1 of the incident laser rn~rgy can he trrw-isf~rred to the plaarna wav~ in thr l~rlltl:~ry

I tlrr+ wave InteractIon [14], For propwd bent- wnve p~rametere, thirr is of th~ order of 1% r,) incr~$a.s~

I ho er~~rgy transfer to t,h plasma wave and ultlmat~ly to the accelerated particles, t hc Irwr ~’l~r*rKy

rl)l~~t he rl~mie to caacade “downwards” from the Irlcl(irrtt waverr to th~ir I{)wrr-frequ{tncy ~I(lIJhaml*



L, (3), measured from the front of the incident I=er-pulses. Using a moving simulation code, one can

save v,aat amounts of computer time by following this interaction region as it propagates through the

plasma [15], The simulation timestep is determined by the shortest relevant oscillation period, which,

in this case, is that of the light waves. Measured relative to the plasma frequency, tfie simulation

timestep scales as WO/kJP. The pl=ma-wave evolution must be studied for times of the order of the

interaction time Ta, which scales as (wo/wP) 2. It follows that the total cost, of simulating the plasrna-

wave evolution scales as (Uo/wP)3. A reference simulation of experimental parameters takes about 1

Cray-hour [16]. A simulation of proposed parameters would therefore take of the order of 103 Cray-

hours, which is much too expensive for exploratory physics. For this remon, much effort has been

devoted to analys. ing the relevant amplitude equations.

Neglecting ion effects, the governing equations are

(d
~+l)m~ ).4m = -[,3 ( 4m . m+i.~jexp(–i~m+lf)+ A~_t.4pexp(i6mt)) ,

(
$+ C”P:

)
+V .4P =-i~p E ,4m A;_* exp(–i{5mf) + ial APlz.4P ,

(6)

wtiere the ,4- are the quiver vclocitiea

‘rhe plasma-wave tiamping coefficient,

,are glvf=rr by

m

of the electrons in the fields of the electromagnetic sidebands.

and the elect romagne~ie group speedr and coupling constants

!/ = r/,, /2up , ?,m = (’(1 –u;/d:)’/a , L?m =wp/4Jm , (7)

resp~ctivrly Thr wavevector k m of the nit h sicieband IS equal to ko + m(kl - kfl), However, due to

{iisprrsiorl, the ~ir]ven frequency do+m(wl —Qo) is not ●qual towm, the natural frequency (~~+c2k~n)1t2

of the rnth si~it’han(i. rhe frequency-mismatch coefficients

6,. =(dm -dm_, - l+ )/%

are given approximately by

4m 2s 61 +(m - l)(wp/u~)3 (H)



3. Temporal Cascade

There are four main timescales which are relvant to the governing equations (6): the mismatch

timescaie on which the plasma-wave nonlinearity detunes the plasma wave from the beating of the

incident waves, the cascadirig t,imeacale on which a significant amount of energy is transferred to the

sidebands of the incident waves, the damping timescale on which a significant amount of plaamwwave

energy is lost to dissipation and the dephasing timescale on which electromagnetic dispersion detunes

the sidebands. These four timescales depend sensitively on experimental parameters such as the plasma

density and temperature, and the incident laser frequencies and intensities [17]. Some idea of the rich

variety of solutions to the full spatio-temporal equations (6) is given by the solut ions of the simpler

temporal equations (d= = O). [n Fig. 1, the action density lAP~2/& of the plasma wave, normalised

to the initial action density [.41 12/01 of the higher-frequency pump wave, is plotted as a function of

time, For proposed beat-wave parameters, the Rosenbluth-Liu saturation time is much shorter than

the time for a complete transfer of action between the higher-frequency pump wave and the plasma

wave, and so the peak amplitude of the piaama wave is limited by relativistic detuning. In the absence

of damping, the plasma-wave amplitude exhibits nonlinear rcccurrence, as shown in Fig, l(a). When

damping & included, the plasma-wave amplitude exhibits some transient nonlinear oscillations before

tending to a metastable steady-state, as shown in Fig. l(b). For experimental paranleters, the time for

a complete transfer of act, ion from the higher-frequency pump wave to the plasma wave is slightly less

than the Rosenhluth-Liu saturation time, and so the peak amplitude of the plasma wave is not limited

by relativistic detuning, I{owever, the evolution of the plasma-wave amplitude is highly irregular, rL9

shown in Fig. l(c), When damping is included, the evolution of the phamkwave amplitude becomes

~ven more irregular, as shown in Fig. l(d)

Fortunately. however, the small parameter UP/Uo which makea computer simulations so expensive

facilitates an approximate analytic solution to the governing equatiorm. Cohen, Kaufman and Watscn

were the first to study the purely tempera] (or purely spatial) equationa, in the context of the beat-

heating of a plasma [18], The effects of the plasma-wave nonlinearity were not inshided in their anaiysis.

C’uhen, Kaufman and Watson noticed that, for the case in which UP/Uo iE much iess than unity and

ti~e ~lectrom%netlc energy haa not spread to largeVdu= of Iml, the coupiing constants I.?,n (7) ,~r~

,appro.xlmateiy qual and the dispersive contribution to the frequency-migmatch coefficients 6* (8) clan

he negiectmi, Physically, the~ approximation mean that the crm~wction for up-scattering i~ o{ItI;d

to lhe cross-M~ction for down-scattering, rind that aii trre sideands are resonantly driven. fly IIsing th~g

approximations derrcrihed above, (Uohen, Kaufrnnrr and Watson w~re abie to show ti~~t

(i
— x .4m A:.-, % 0.
(it

m

(!))
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action density 1AIl’/LJl of the higher-frequency pump wave, b plotted M 8 function
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AS the cascade develops, the plasma wave is driven not only by the beating of the incident waves,

but also the beating of any pair of adjacent sidebands. Result (9) shows that the tots) ponderornotive

force of the electromagnetic waws is constant. This decouples the pl~ma-wave equation from the

equations which determine the evolution of the sidebands. After solving for the plasma-wave amplitude

as a function of time, AP becor.es a known coupling term in the sideband equations, which can then be

solved analytically. This approach waa also used by Karttunen and Salomaa [19], [20], who included the

effects of the ph-iama-wave nonlinearity. Given the analytic sol~~tions to the approximate equations, one

can then determine important properties of the caacade, suclt as how the peak amplitude of the plasma

wave depends on the linear frequency mismatch 4, and how electromagnetic energy is shared among

the sidebands. Although collisional damping plays an important role in t+e long-time development of

the temporal cascade, it is relatively unimportant in the long-time development of the spatietemporal

cascade. Because of this lack of direct relevance to current beat-wave acceleration schemes, the effects

of damping are not studied in detail.

For the purposes of beat-wave acceleration, the plasma-wave amplitude should be as large as

possible. In Section 1, plasma-wave generation was discussed for the case in which the frequency

matching of the incident lasers was exact. If the frequency matching is not exact, the plasma wave is

detuned from the beating of the incident waves by a total frequency mismatch of 61 + CYIAP{2. Tang,

Sprangle and Sudan showed that one can partially compensate for the nonlinear detuning by using

an electron density for which 61 is small and negative [21], [22]. Although the plasma wave grows

more slowly in the linear regime, it stays in resonance with the incident waves for a longer time and

ultimately grows to a larger amplitude. This idea has been extended by Bobin [23] and Martin et

af, [24], who allowed the linear frequency mismatch to be a function of time. These investigations

show that the plasm~wave amplitude can be increased by roughly a factor of two, However, to take

full advantage of this eflect, the electron density must be precisely controlled. Even if the electron

density could be controlled with sufficient precision, the plasma-wave growth time ia significantly

longer than !’or exwt frequency matching and the modulation] instability is likely to disrupt the

plasma-wave during its growth phase [25], If one specifies a tolerable range for the ~eak plasma-

wave amplitude and corresponding saturation time, the above analyses can be inverted to find the

tolerable uncertainty in the electron density [4], This is perhaps their most practical use, Within

the framework Of the approximate equations, the electromagnetic cascade is symmetric with respect

to the incident frequencies. However, when the effects of electromagnetic dispersion are taken into

account, the cascade can be biased “downwards”, This is because the dispersive contribution to tile

frequency mismatches U~ ($) depend algebraically on the nloclenumber m. By arra.l~ging for 61 to l~e

small and positive, t}le c~cade to higher frequencim is detuned, while the cascade to lower frequencies

is enhanced. Since energy is conserved, t}le decre~ in electromagnetic, energy is reflected in a larger

pl~ma-wave amplltucie. This rflect, which was first noticed by Cohen, Kaulman and Watson, is in



competition with the effect of Tang, Sprangle and Sudan. However, it is only important on a timescale

n+;’]= 1.5(do/up)3/(m - 1) . (lo)

This dispersion timescale depends seneiti”~ely on the rate of generation of new sidebands, It will

shortly be shown that, for weakly-relativistic laser amplitudes, the dispersion timescale is longer than

the acceleration timegcale. This justifies the ne! iect of dispersion in the approximate equations.

The rate of generation of new sidebands is easily estimated. Let M be the index of the lowest-

frequency sideband of any appreciable amplitude. Rom Eqs. (6), the amplitude AM-l of the next

sideband grows according to dtlAM - 1I a /3M_1 IAMAP 1. By analogy with the theory of three-wave

interactions, this growth can be expected to saturate when the action density lAM-l 12/flM- 1 of the

daughter wave is of the order of t Le initial action density IAM 12/~M of the parent wave. This condition

determines the time taken to generate the next sideband or, equivalently, the rate at which new

sidebands are generated. Specifically,

$M a -( DMPM-1)’’2AP , (11)

This cascading rate is proportional to the relevant coupling constanta and the plaam~wave amplitude,

as one might expect. A similar result can be derived for the caecadi.ng of energy to the higher-frequency

sidebands, [Jsing the analytic solutions of the approximate equations, Karttunen and SaIomaa have

estimated the caacading rate to be

;M * -2&AP . (12)

Estimatea ( 11) and ( 12) agree to within a factor of two in their common regime of validity. Notice

that the cascading rate depends implicitly on the linear frequency mismatch J1.

The predicted properties of theelectromagnetic c=ade can be checked by numerically solving

the exact equations. In Fig 2, the exact electromagnetic spectrum iE p!otted at time intervals of

ten Raaenbluth-Liu oacillatim periods. For Iwx amplituda Al and A. of 0.2, this time interval

is approximately 1,5 x lF U;*. In Fig 2(a) the cw~e ia symmetric with respect to the incident

frequencies. This is to be expected since, for small va]uea of Iml, the cr~ctiono for upscattering

and down-oca&tering me equal. The epectrum spreads by about 8 sidebands in 5 time intervals. This

corrmponds to a caacading ram of about 1,1 x 10-3 WP. Equations (10) and (11] predict a c~cading

rate of about 1,5 x 10-s Up and 0.75 x 10-3 WPrespectively, in fairly good agreement with the otmerved

rate. A reasonable estimate for the cascading time T“, defined to be the time taken to generate all the

Iuwer-frequency sidebands, is therefore

z[w;*] N 2.7(w0/wP)2(.4P)-1 , (13)

where () denotes M average over the ~nbluth-Liu Oscillation period, The dependence of ‘C on

UO/Wp ad (Ap) follows from Eqa. ( 11) and ( 12), while the coefficient of 2.7 is derived from the
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observed cascading rate. It follows from Eq9. (5),(10) and ( 13) that T~/T~ > T,/2T~ Z= (2.3( .4P)) -1.

~or weakly-relativistic Iaaer amplitudes, the ratio T~/TO is always greater than unity and so the

effects of electromagnetic dispersion can be neglected on the acceleration timescale. Notice that Eq.

( 10) predicts that the cascade to lower frequencies should proceed more quickly and that the cascade

to higher frequencies should proceed more slowly aa larger ~a!uea of Iml are re~chec!, in qualitative

agreement with Fig. 2(6). The natural tendency of the system is to share the electromagnetic energy

among the sidebands. This can be seen even more clearly in Fig. 3, in which the entropy – ~ Pm log P“

of the electromagnetic spectrum is plotted as a function of time. Apart from small fluctuations on the

Raenbiuth-Liu timescale, the electromagnetic entropy incre~s monotonically with time.

4. Spati_Temporal Cascade

The only quzlitztive difference betwzen the temporal cascade and the spatio-temporal cascade is

that, in the latter, each wave convects at its group speed as lt interacts with the other wavea. For the

case in which wP/wo is much lean than unity, the approximations used to study the temporal cascade

are also valid for the spati~ternporal cascade. In additim, the electromagnetic wavea all propagate

wit h approximately the sa,r,re group speed U., By using these facts, Karttunen and !Momaa [26] were

able to show that

Tt]is nierms that the total ponderomotive force of the electromagnetic waves ia independent of time,

In a frame moving with the electromagnetic waves. The driving term in the plasm-wave equat ion

is t hercfore a knawn function of z - tIOf, or equivalently, the retarded time t - r~~’o measured from

the leading edge of the Iaaer pulses. After solving for tl]e plaamwwave amplitude MI a function of

the retarded time, AP becomes n known coupling term in the sideband equations, which can again be

solw<d anaJytlcdly,

For exact frequency matching, the rnmcimum plasma-wave amplitude and corresponding saturation

time are giveu by Eq. (4) and Eq. (3) respectlvcly, The temporal analyses [21] - [25] of the effm.ts

of freqll?ncy m.ism~t~ Me va]ld for the spatl~tcmporal problem, providing that one works In terms

of t he ret~ded time and t,akea the Cflects of la.~rr pul~-ehape into account, The -t. imabw ( 11) and

(12) for the cascading rate are also valid for the spati~temporal problem. Since the cascading rate IS

proportional to the plmma-wave amplitude, wh, ch IS now A given function of x- ~~t,t,thr ●lectromagnc(lc

sp?ctrurn spreads most rapidly at th~ tralll])g ●dge of th~ Incident l~r pulses where the plasma-wave

amplltude IS Iargeat, The cawading length L, IS qual to the caa- .ding time (13) multiplied hy tile

sped Of Ilght, with th~ ~vernge plaan~a-wave amplltude (,4, ) r~placed by the maximum pla!!ma-wavp

wnl)ll(ude Awdt (4) ‘1’hr rolllsmnal damping of t he pl~ma wave IS only Important for larg~ vallil’% of



the retarded time. These valuea of the retarded time correspond to a portion of the plasma wave which

is far behind the interaction region and is not coupled to the electromagnetic sidebands. It follows that

the plasma-wave ger,eration and the cascading of electromagnetic energy are unafhcted by damping.

Unfortunately, the accuracy Of the analytlc model described above cannot be checked by com-

parison with numerical solutions of the exact governing equations, because such solutions do not yet

exist. There is, however, a current eflort to rectify this shortcoming. In the meantime, the regime

of validity of the analytic model can be estimated by examining the self-consistency of the relevant

approximations.

In cent: aat to the temporal problem, in which the peak pl~ma-wave amplitude haa no effect on

th” symmetry of the electromagnetic cascade, in the spati~t.emporal problem the peak plasmw, wave

amplitude does have an effect on the symmetry of the cascade, For optimal laser puke-lengths, the r~te

of deposition of laser energy LrI the wake of the plasma wave is proportional to the square of the peak

plasma-wave amplitude. This electrostatic energy is left behind the interaction region as it convects

through the plasma. Since energy is conserved, there must be a corresponding decrecwe in electromagn-

etic energy and, hence, in the average electromagnetic frequency. Thus, the spatiotemporal caacade

is inherently asymmetric, even for exact frequency matching. Unfortunately, neither the convective lose

of electrostatic energy nor the inherent aaymmetry of the caacade u self-consistently taken into acount

in the approximate equations. The lengthscale on which these effects become important can be easily

mt irnated, Since the rate of energy transfer to the plasma wave is constant, the pumpdep]etion length

f.d is determined by the requirement that the energy contained in the wake of the plauma wave is equal

to the tot~ energy which waa originally contained in the laser pulaea. Taking the Iaaer pulse-lengths

to be given by Eq. (3) and the plasma-wave amplitude to be given by Eq. (4), yieldm

()(‘ IA,12+ IAO[2
L&#] = (2.2 - 2.4) ; -

)lA1Ai)14/3 ‘
(14)

where t he coefficient of 2,2 applies to square pulses and the coef?lcient of 2.4 applies to triangular pubes.

f3Y definition, this is also the Iengthscale on which the average electromagnetic frequency decrewn

to zero, There is also a convective Iom of electromagnetic ●nergy due to the small difl~renc~ In the

group speeds u~ (7) of the sidebands [27]. However, this doea not become important untd a siqnlficnnt

aumunt of energy haa ~prcad to large values of Im[.

It follows from the preceding analyei~ that there are (our conditions which must he nAtislied If thr

analytic modrl M to be rwlf-consiet~nt. The n~glect of electromagnetic dispersion and the neglect of t IIF

dlflerrnce in the coupling constants both require that rl~ctromngnetic ●nergy haa not mprend to Iwge

value of [ml, Thu WIII be the case if la (!j) ie much leas than LC (]3), The convective ●nergy I(MS will

h? small compared to the lncidrnt Iaaer energy If La is much ha thnn f,d ( 14) And the ~MYnlmf’t rY “f

(he cascade wdl h unlmpmtant if 1, is much Ieau than L~, ‘Ihtie four conrntraintn cm be sl)nlmnrlw(i



by the inequality

La << LC << Ld . (15).

Notice that all three Iengthscales in condition ( 15) scale as (uo/up)2 and are only weakiy dependent

on the incident l=r pulseshapes. For the common case in which the incident laser-amplitudes are

equal, ~he ratio LC/Ld is approximately equal to 0.34, independent of Lwer amplitude. As a specific

example, for incident laser-amplitudes of 0.06, the three Iengthscalea are in the ratio 1.0: 3.4 : 10 and

condition ( 15) is reasonably well satiafied.

The laser-plasma coupling efficiency q is defined to be the fraction of incident laser energy which

is transferred to the plaama wave during the acceleration time, Since energy is deposited in the wake

of the plasma wave at a constant rate, the l.mer-plasma coupling efficiency is given by

For the specific example descrited above, the laser-plasma coupling efficiency is approximately 10%.

In principle, the maximal laser-plasma coupling efficiency could be significantly greater than 10%.

However, the approx~mations used in the analytic model are not valid for large vaiuea of q and so a

definitive conclusion cannot be drawn at present,

5. Surmmary

A review was given of energy cascading in the beat-wave accelerator, The physice of the electro-

magnetic cascade and the corrrspcmding plasma-wave evolution are qualitatively well understood. A

quantltatlvc analysis of these phenomena can be made utiing the analytic Soluticns of an approximate

set of govrl ning equations. For the t~illp, ~ral caacade, the accuracy of this approximate analytic r,mdel

has brwn verified by comparison with numerical solutions of the ●xact eet of governing equations, For

the spatio ~en]poral cascade, such numerical aulutions are not currently available, Uowever, by exami-

ning the self-consistency of the relev~t fipproximatione, the regime of validity of the analytic model

c,an be estimated,

F~w propoeed beat-wave pararnetera, the effects of electromagnetic dispersion do not wwm to I)r

Import (ant on the acceleration timescale, “rhio .Yuggeata that the plaama wave will remain cohrrent long

rnough to acc~lrrrite Injected particka to high energy. [n addition, id~aliscd laaer-plasm~ coupling

rlficiencim of the order of lo(~ 1]0 not -m llnr~~nabe, perhaps the mat wrious obstaclt* t{) I lie

expmimentml realisation of ~urh Iascr-plaama coupling efficicncim is the production of sulficwt)tl Y-

ulllform plaAn]aa. Recent i)rogrtws in tl~is dir~ction haa been reported by Dyinoke-llrrdnhaw ?t a~ [’JM]
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